
Vehicle Speed Detection Using Multi-Branch
Networks From Temporal Image Pairs

1st Rudramani Gyawali Singha
Dept. of Information Technology

RGIT, Mumbai University
Mumbai,India

rudramani.singha@gmail.com

2nd Manan Lad
Dept. of Information Technology

RGIT, Mumbai University
Mumbai,India

m616e616e.lad@gmail.com

3rd Gaurav Mukesh Shipurkar
Dept. of Computer Engineering
MPSTME, NMIMS University

Mumbai,India
gaurav.shipurkar4@gmail.com

4th Anish Rohekar
Dept. of Information Technology

RGIT, Mumbai University
Mumbai,India

rohekar.anish@gmail.com

5th Chaitanya Thombare
Dept. of Information Technology

RGIT, Mumbai University
Mumbai,India

indcthombare@gmail.com

6th Sunil Wankhade
Dept. of Information Technology

RGIT, Mumbai University
Mumbai,India

sunil.wankhade@mctrgit.ac.in

Abstract—Vehicle Speed Detection is important for traffic
monitoring and surveillance. But very little research has been
done on techniques that don’t require specialist hardware or
hand-crafted image processing method on video streams. This
paper presents a novel end-to-end learning-based system that
utilizes a multi-branched network architecture to estimate the
speed of any vehicle from only two time-varied, unprocessed,
images. The system also propose an optimized approach for
generating a ground truth dataset by creating an estimation
method for a 3D Rendering Engine. And further, propose a
very computationally cheap method of extracting license plates
by custom training a YOLOv4 tiny architecture in tflite format
and Tesseract OCR. The proposed low-cost system is easily
implementable in the existing infrastructure and provides a
lightweight performance with computation time of ≤ 101.58 ms
on average and accuracy of 97.3% in a wide range of applications.

Index Terms—Vehicle Speed Detection, Multi-Branched Net-
works, YOLOv4 tiny custom training, OCR system, End-to-End
Learning, Object Detection, Computer Vision, Deep Learning.

I. INTRODUCTION

Population growth has resulted in the increased use of
vehicles which has over time augmented the number of vehicle
accidents in the real world because of over-speeding. Hence,
vehicle speed monitoring is very essential and important for re-
ducing these accidents. In order to advocate traffic monitoring
and surveillance, the system proposes a multi-branched neural
network for expeditiously and meticulously detecting the speed
of the moving vehicles. To more simplify the work of the
traffic monitoring control and to identify the car that is over-
speeding, The system proposes a custom-trained YOLOv4
model[24] that specializes in detecting the bounding box of
the license plate.

Presently, radar technology is used by traffic monitoring
and surveillance systems. Radar technology employs radio
waves for detecting the speed of the moving vehicle. An
electromagnetic pulse is produced by the device that travels

towards the moving vehicle and reflects off. The reflection
results in a slight frequency shift that is the Doppler Shift.
This shift in frequency is scrutinized which results in the
actual speed of the moving vehicle. Other signals can cause an
interruption in the radar signals giving rise to false positives,
if there are several objects and mediums in the air the signal
can be interfered leading to false results.

Contemplating the drawbacks of the previous methods, a
method is designed for detecting the velocity and license plate
of the vehicle that is over-speeding. For the data set, a 3D
Render Engine is used to simulate a scene for generating high-
resolution images. Each data point should have at least two
images, one before and one after. Over 40,000 high-resolution
images of 2048 x 1080 pixels are generated so that this model
trains with high accuracy and efficiency. A powerful model
is created utilizing the optimal combination of ResNet50,
convolution layers, and LSTM layers. ResNet50 is a highly
efficient pre-trained image classifier. Using transfer learning,
we have custom trained the binaries that have been pre-trained
on the ImageNet dataset to specialize for this experiment. This
combination of networks becomes each branch of this Multi-
Branched Network Architecture. Since LSTM’s networks are
considered prominent in finding the temporal variance in a
given time series data, it is applied in the system to extrapolate
vehicle speed from each branch’s abstracted encodings. As the
system is also detecting the license plate of the over-speeding
car, YOLOv4 tiny is implemented for object detection after
extensive experimentation and TesseractOCR for extracting the
text out of the bounding box.

The system is available in the following GitHub repository-
https://github.com/monacotime/Vehicle-Speed-Detection-
Using-Multi-Branch-Networks-from-Temporal-Image-Pairs

II. RELATED WORK

The paper [1] uses an optical flow algorithm, specifically the
Lucas-Kanade algorithm [2] for object tracking, speed detec-

tion, motion, and direction of motion detection. It combines
Kalman filters [3] for occlusion reduction and optical flow
for delivering accurate speed results. Optical flow is applied
on clustered object data from DB-SCAN [4] performed on
foreground subtraction. Foreground subtraction is performed
using Gaussian Mixture Models [5] with dynamic background,
it’s role is to classify whether pixels belong to foreground
or background. The speed detection algorithm used has its
constraints like video should have the same brightness lev-
els throughout, temporal persistence and points in the same
context should belong to the same surface and have coherent
motion. This paper [1] focuses more on vehicle detection/
object detection from video stream trained on the constant
background context.

Another method proposed in the paper [6] for foreground
extraction is the CVS (combination of saturation and value)
which is based on the frame difference. The mean filter
method [7] is used for the detection of foreground and then
CVS is applied to extract the background along with the
background color particularly with low light settings and fixed
camera positions. Vehicle location is considered as 2d, which
is mapped to real-time 3d vehicle positions considered to have
2d motion finally achieving 2d-to-2d mapping. Image blob is
made out of binary image generated after CVS, performing
edge detection, noise and dilation removal, and object labeling.
Finally, speed detection is performed using blob centroid and
results are calibrated. CVS method applies a constant threshold
to all the pixels and in low vehicle speed settings, a low
threshold will detect imperfect background spots and a high
threshold generates imperfect foreground.

To detect vehicle speed using computer vision, object de-
tection and tracking are the initial steps to be performed. The
paper [8] proposes a system with WaldBoost detector [9] used
along with modified TLD trackers [10]. WaldBoost detector
is based on the cascaded classifier made by Viola and Jones
[13]. This method creates fine-grained detection cascades
similar to that of Viola and Jones. 80,000 positive samples
were generated and trained on WaldBoost from 5000 car
samples with a negative background sample count exceeding
1 billion. WaldBoost[9] uses a sliding window approach to
successfully detect vehicle positions. Successful detections are
passed to FOT trackers[11] which internally use the Lucas-
Kanade algorithm [2] to accurately track the vehicle position.
LrD (Learning and re-detection) [12] corrects the positional
errors from FOT and contributes inaccurate position tracking
of the vehicle.

Some approaches [14] utilize camera optics and digital
image processing for vehicle speed estimation. In this method,
coordinates of the vehicle in the video images which are
considered as 2d are mapped into real-world 3d coordinates.
The camera is positioned with its optical axis tilted at an
angle from the road, utilizing geometrical optics a mapping
function is developed between the real-world domain and
image domain. The mapping function is used to calibrate
results that utilize the vanishing point and size of the vehicle.
The cross-section of parallel mark lines is used to calculate the

vanishing point. For vehicle detection on video images, they
are using a method analogous to Chris Stauffer [18] which
over the period provides adaptive background. For tracing the
vehicle positions they have employed method homogenous to
Cucchiara and Freund[17]. The method proposed is inexpen-
sive as it requisites only a single camera and a computer for
vehicle speed detection in multiple lanes.

Another method considering vehicle speed detection utiliz-
ing image and video processing is proposed in this paper [15].
The method designed commences with video segmentation
where they have sampled the frames to get only 3 frames per
second instead of 30 frames per second to avoid unwanted
redundancies and to reduce the time complexity. Median
filtering [19] is employed in this method to remove the high-
frequency noises like salt-pepper noise and convolution noise
(blurring) for preprocessing. For background subtraction, they
have employed a reference frame for detaching the background
of the image. In this method, edge detection is implemented
by employing a couple of methods like smoothing, gradients,
non-maximum suppression, double thresholding, edge tracking
by hysteresis. For the further enhancement of the edges, they
have executed morphological operations like dilation and ero-
sion. To reduce the static interference and heavy background,
vehicle segmentation is implemented with the help of masks
that vary according to the background, and segmented images
are obtained using a logic AND operator. In this paper [15],
speed detection has been implemented by using a corner
detection method i.e Moravec operator [21]. Moravec operator
has a high-performance rate, better localization and sturdiness
considering noise. By employing the Moravec approach all the
corners of the frames are detected and then by utilizing the
distance formula speed is calculated considering the corners
of both the frames. However, despite using such convoluted
methods, the efficiency lacks when this method is tried on
multiple vehicles on cloudy days resulting in false positives.

Speed detection using GMR sensors is one of a kind method
that is developed in this domain. In this paper [16], method
employed requisites the use of two GMR sensors for speed
detection which is a stable method considering the parameters
like temperature and noise. The complete circuit designed has
GMR sensors, a low pass filter, high pass filter, an instru-
mentation amplifier, a micro-controller with A/D converter, a
radio module and a fast ram. This system has to be positioned
on the road, when a vehicle passes above this system, the
micro-controller with A/D converter activates the signal of
the sensors to detect the speed of the vehicle. In this way,
this system designed can assist the traffic monitoring systems.

III. PROPOSED WORK

A. Ground Truth Data generation with a 3D Render Engine

With the nature of the dataset being that each data point
must have at least two images, namely one before and one
after with a time gap of exactly 0.25 seconds and an associated
ground-truth value of the correct speed read by a speedometer,

the decision was taken to collect the data through an automated
3D simulation.

The above fig.1 shows a 3D Render Engine simulating a
scene for generating high-resolution images. We have pro-
grammatically written a controller script for the Render Engine
such that we have complete control over all the minute
hyperparameters of each data point.

While rendering, this method enables to create 3D sim-
ulations and animations of any car driving down the road
in a more robust and efficient manner while also providing
complete control over its critical hyperparameters ie. speed,
color, license plates, distance, time variance, etc.

Fig. 1. 3D Animation and Render Engine

Varying the hyperparameters helps produce a dataset that
is more identical to real-world applications. Mathematical
estimation methods are written that estimate the position and
the angle of the car after the given delta time and this is
heavily used by the controller for extreme optimization during
dataset rendering and reduce the time complexity by more than
1000% from an average of 2000 seconds to 2 seconds. And
now because with the controller, there is no need to re-animate
the whole scene for each variation in the hyperparameter but
rather just render 2 shots, one for before and one for after the
delta time ie. 0.25 seconds and all the in-between calculations
can be estimated mathematically.

The dataset has train, test and validation split of 80:10:10.
Which enables us to conduct detailed analysis of the model’s
performance

With this method, over 40,000 high-quality images with a
resolution of 2,048 x 1,080 pixels are generated, that enables
to create the dataset with over 20,000 pairs of before and
after images and their co-responding mathematically estimated
speeds as the data points.

B. System Architectures
The System includes three main blocks, Multi-Branched

network block, License plate detection block, and Tesseract
OCR block fig.2. Two consecutive images of a car moving
on a straight road are captured with the marking grids visible
in the camera set at a pre-defined offset angle. Two sets of
images are taken one when the car is first completely visible
in the frame and the other image is taken after a set amount
of time - to calculate the speed of the car. In this experiment,
time is kept as the constraint.

These images from the input of the Multi-Branched network
block. The block utilizes a combination of ResNet50 layers
and custom-made convolution layers feeding forward to the
LSTM block whose output is then used to summarize and
evaluate the output speed. The speed estimations made by the
model are checked to single out vehicles offending a certain
speed threshold and their respective images are sent forward
for further processing.

To generate the ground truth for training YOLOv4 tiny
[24], each car image is manually labelled for license plate
and transfer learn it on pre-trained YOLOv4 [24] weights on
CoCo dataset. CoCo dataset consists of 330,000 plus labeled
training images with 80 object categories. pre-trained YOLOv4
weights contain the features for more than 15,000,000 object
instances and their respective contexts. With the experiments,
it is concluded that these well-generalized weights give higher
accuracy as compared to other methods like WaldBoost [5]
when custom trained and therefore is selected for the system.
This Custom trained YOLOv4 tiny model is then converted
into a TensorFlow Lite model to slightly push the performance
level of the model for license plate detection system and be
suitable for even low compute mobile devices.

Fig. 2. System Architecture

Vehicle images taken during the speed estimation process in
the Multi-Branched Network block which violates determin-
ing speed limits are captured and passed through YOLOv4
tiny[10] which is already trained and converted into the
TensorFlow lite model. The detected number plate is cropped
using the bounding box coordinates using computer vision
techniques and passed on to the OCR block for text extraction.
In the OCR block, Tesseract OCR implementation in python
namely pytesseract is implemented. License plate images are

pre-processed and enhanced to suit the OCR process.
Outputs from the system, evaluated speed, License plate

number, and the image of the vehicle, can be then used by
the enforcement authorities to get the account of the vehicle
in question and to hold the owner accountable.

C. Multi-Branched Network

In order to adapt and specialize the LSTM [23] block to
differentiate the temporal variance between the image pairs
and to ensure that each image’s encoded representation is
independently factored into the regressive estimation of the
speed in the final neuron of the dense network, the system
proposes a multi-branched approach. This novel approach
eliminates various issues and challenges faced by this [15]
and this [16] approach. Double detection and double encoding
of each temporal pair diminish the possibility of the model
over-fitting the attributes of any single image out of the pair
during the process of creating their representation. For their
optimization, the ADAM optimizer is used.

wt+1 = wt − αmt (1)

mt = βmt−1 + (1− β)

[
δL
δwt

]
(2)

The loss is calculated using the Root Mean Squared loss
function which is described in (3)

L(y, ŷ) =
1

N

N∑
i=0

(y, ŷ)2 (3)

As a result, the LSTMs are presented with only the extracted
higher-level abstraction of the temporal variance and must
distinguish and generalize to the difference in the patterns of
abstraction.

It is discovered in the experiments that, this end to end
approach of teaching the model to generalize the speed of
the car distinctly outperforms other data-driven statistical
approaches like edge-based histogram flow [20] detection and
handcrafted feature engineered approach in terms of robustness
in the variation of the application, speed, and accuracy. This
adaptive characteristic of the model has a direct correlation
with the architecture of the proposed model.

The input to the proposed model will be segmented equally
to ensure no bias are inherently present in the data points
even before the image has entered the model’s input layer.
The slicing function will ensure that the images are partitioned
NumPy vector arrays of equal size and equal dimensions. Then
transfer the 2D vectors to the input layers of each branch
independently. No data will be tampered with during this
process other than the slicing and resizing to ensure it fits
the input dimension of the ResNet50 model.

ResNet50 [22] is a pre-trained model architecture that has
been trained on different datasets compared to own use case
ie. car speed prediction, but it can provide a critical starting
point since the new task can make use of the features that
have been learned and abstracted while training from the old
previous dataset. For the specific proposed model, it is opted

to utilize the ResNet50 architecture that has been trained on
the ImageNet dataset that is over 14,000,000 images large
categorized into 1,000 classes.

Fig. 3. Multi-Branched Network Architecture

The ResNet50 model used has 5 stages each with a con-
volution and identity block with over 23,000,000 trainable
parameters which constitutes a total of 48 convolution layers.
This enables it to design the branched network with having a

very deep neural network without having to tackle the problem
of vanishing gradient that is prevalent at such deep layers.

By utilizing the unique advantage of transfer learning on
ResNet50 [22] and then custom training the last 2 deleted
layers, the abstraction that the ResNet50 provides is only
relevant to the Cars and it only encodes the representation
of the cars. These last few layers are replaced with the chain
of Convolution Blocks as shown in fig. 3. Each output of the
convolution layer has to pass through the LeakyReLU [30]
activation function for each of the filters. The LeakyReLU
function computes

f(x) = 1(x < 0)(αx) + 1(x >= 0)(x) (4)

for each input, where α is a very small constant. With this,
train them both to specifically generalize the abstraction of cars
that are present in the custom dataset are generated through
the Animation and 3D Render Engine.

These abstractions are done independently for each branch
separately and the encoded representations are flattened and
passed on as inputs to individual LSTM [23] neurons. Long
Short-Term Memory (LSTM) networks are specialists in find-
ing temporal variance in a given time series data.

it = σ(Wi ∗ [ht−1, xt] + bi) (5)

ft = σ(Wf ∗ [ht−1, xt] + bf) (6)

ot = σ(Wo ∗ [ht−1, xt] + bo) (7)

Each LSTM block has three gates namely forget gate (ft),
update/input gate (it), output gate (ot). And in this specific
case, the time series data is the two very high-level abstract
representations of each car in sequence from each independent
branch. Each LSTM neuron passes the output to the next layer
as well as the neuron adjacent to it in the same layer.

Once the LSTM block has calculated an output after factor-
ing the encoded representation from each branch, the output
is passed onto the next block which is a series of layers
of Densely or Fully connected neurons. Meaning that each
neuron in these layers is connected to all the neurons in the
adjacent layers. This block narrows down the output of all
the other blocks and branches and funnels them into smaller
and smaller-sized layers. This increase in restriction forces
the neurons to calculate a representation of the whole data
point in terms of speed. Especially in the most restricted layer
which is the last and the final layer with only one neuron. This
neuron’s output is passed through a linear activation function
which then finally is considered as the output of the whole
model.

D. YOLOv4 tiny for number plate detection

YOLOv4 model[24] is the fastest object detection model
with the tiny variants performing at 155 frames per second
and giving mAP(mean average precision) rates almost double
as compared to other real-time object detectors. It sees object
detection as a regression problem and is trained to learn the
general representation of an object from the entire image as

a result of encoding the context information about the classes
and their representations. By looking at an entire image it
predicts bounding boxes and confidence for the object (number
plate in our case) as seen in the fig.4.

Fig. 4. Number Plate Detection Flow

The prediction consists of x, y, w, h, confidence - x,
y represents the center of the bounding box, confidence is
calculated by taking a product of object probability and object
ground truth (IOU, intersection over union). High-resolution
images, greater than 448 * 448 are used as the tiniest bit of
information from the image is used for training. Faster rates
and higher performance of the YOLOv4 tiny model on mobile
IoT devices make it an excellent choice for the number plate
detection problem. Transfer learning on YOLOv4 tiny model
is used in the system to detect number plates using annotated
car images taken during the experimentation for 8 hours on
NVIDIA Tesla K80 GPU.

E. Tesseract OCR for number extraction from number plate

Tesseract OCR [25] is one of the notable OCR engines avail-
able for text extraction after its development in 1984. It detects
the outline of the text with the help of connected component
analysis and stores the outlines to detect inverse text - black-
on-white tests are very easy to detect and extract however
that is not the case with white-on-black text, tesseract OCR
detects the inverse text easily. Text outlines are further broken
into word outlines and an attempt is made to detect words out
of it. The detections with satisfactory confidences are passed
to adaptive classifiers for getting accurate detections. word
outlines are detected using spaces and fuzzy spaces which
are then changed to x-heights in the final stage to detect small
captioned words. To extract the number out of the number
plates by tesseract, a python implementation of tesseract OCR
is used for number extraction, fig.4. with the high accuracy
of tesseract OCR numbers from the number, plates are almost
always extracted 99% of the times.

IV. RESULTS ANALYSIS

A. Comparative Analysis

The implemented method overcomes the variable back-
ground problem faced due to the application of the Lucas-
Kanade algorithm [4]. Since the method’s only requirement
is a marking grid, as a context, visible on the input image,
The system is immune to variable conditions like lightings,
seasons change, variable backgrounds and other image oc-
clusion problems faced in [4]. On the special comparative
validation dataset of 3050 images (1280 x 720 pixels) with
difficult background segmentation, this [4] previous method
only achieved an accuracy of 34.6% whereas the implemented
model was able to outperform it by correctly predict with
87.7% validation accuracy on the same dataset.

Fig. 5. A comparison between different pre-trained binaries for Multi-
Branched Networks

The method proposed in the system is based on end-to-
end learning and therefore does not require any handcrafted
correction algorithms like Lrd[5], Kalman Filters[5] or any
other intermediate steps like foreground-extraction, contour
detection, and centroid estimation as proposed in [5]. This
method also foregoes the need for object tracking and its
heavy computational demands as proposed on [5], since it
only needs to apply image classification twice. Therefore, the
mean execution time taken by this [5] proposal ,when run
iteratively over 200,000 predictions, is 1440s milliseconds
while this method averages about 67 milliseconds over the
same iterations. Making the model over 21.5 times faster
and better optimized in time complexity to the previous
proposal[5].

Although methods like GMR tracking [3] utilizes GMR
sensors, filters, and microcontrollers to detect vehicle speed
with very high accuracy, the fact that it has to be placed inside
the road, introduces new vulnerabilities like unauthorized
tempering and loss of visual context. It also has an added risk
of component failures and high maintenance since there are
many intricate and delicate parts. These shortcomings can be
easily avoided using the proposed method which only uses a
camera from a high vantage point making it difficult to tamper

without being seen and also connected to already secure
networks. The system consists of minimum moving parts
and easy implementation with current infrastructure making
it far more economically viable compared to this [3] proposed
system.

Fig. 6. A comparison between accuracy of different pre-trained binaries for
Multi-Branched Networks

The components proposed in the method [3] cost be-
tween $250-$500 depending upon the commercial availability,
whereas, the proposed system, with only minimum require-
ments, costs a nominal charge of $75-$100 with commercial
over-the-shelf components. It makes the system, in the worst
case scenario, 60% cheaper and, in the best case, 85% cheaper
as compared to this [3] previous method.

For the implementation, the system’s multi-branched net-
work is tested with other famous image classification net-
works like MobileNets and VGG. ResNet50, MobileNetv3,
MobileNetv2, VGG19, VGG16 are trained for 1000 epochs
each on NVIDIA tesla K80. Validation loss after every 100
epochs were gathered and compared. Each model was at least
trained for 2.5 hours on a dataset consisting of 40,000 high-
quality, 3D rendered images.

As per the comparison fig.5, After almost 100 epochs
the models start generalizing to the training data. Although
MobilenetV2 [28] shows good performance for the initial 100
epochs it gradually starts over-fitting training data resulting
in a performance drop on the validation set. VGG16 [26]
and VGG19 [27] show similar downward trends but finally
stabilize at 0.05, 0.06. Although deviating at places, ResNet50
shows a gradual increase in accuracy overall pointing towards
a well-fitted model and therefore is selected for the experi-
mentation. Mobilenetv3 [29] also shows a gradual downward
trend finally finishing along with the Mobilenetv2 variant
around 0.03. A model is detected with the best performance
on validation data for the Multi-Branched Network.

Licence plate detection is done using yolov4 tiny for real
time performance rate and application on lite devices. Yolov4
tiny and Yolov4 gives good validation accuracies as per fig.7
fig.8 but tiny variant is selected due to its lite nature. Other
detectors tested for the licence detection include Mobilenetv1

and WildBoost which give decent results on licence plate
dataset from imagenet.

Fig. 7. Training Accuracy of the License Plate Detection

Fig. 8. Training loss for License Plate Detection

The computational time required is tested by different
system components like image classifiers used in Multi-
branched models, Object detectors, and OCR techniques for
text extraction. Different versions of the models used are
compared in the system and also similar models to make time-
efficient decisions. Two sets of images are tested with low
and high resolutions of 640*480 and 2048*1080 respectively.
Time required to make predictions are calculated to the nearest
millisecond.

TABLE I
MULTI-BRANCHED MODEL

Networks Image Resolution
640x480 2048x1080

ResNet50 34.56 68.95

MobileNetv3 42.37 96.68

MobileNetv2 58.92 172.72

VGG19 103.25 215.12

VGG16 89.28 193.13

TABLE II
LICENSE DETECTION

Networks Image Resolution
640x480 2048x1080

YOLO V4 21.97 46.73

YOLO V4 tiny 9.57 16.85

WaldBoost 17.18 43.47

SSD-MobileNetV1 34.39 52.58

TABLE III
OCR

Networks Image Resolution
640x480 2048x1080

TesseractOCR 57.45 75.24

CloudVisionAPI(Google) 46.91 62.18

For the Multi-Branched model, ResNet50 is selected as
the image classifier but still check the other candidates for
time efficiency. ResNet50. Although VGG19 has got higher
execution time than MobileNetv3, VGG19 outperforms Mo-
bileNet in terms of accuracy but ResNet50 outperforms all
of them with respect to time as well as accuracy and is
therefore selected. In order to perform object detection on
the license plate, different models are compared based on
different methodologies. WaldBoost model based on image
cascading is known for its high accuracies but still, YOLOv4
tiny variation is used. Although YOLOv4 tiny lacks in terms of
performance but in terms of computational speed to make up
for its lost efficiency. CloudVisionAPI from Google performs
better compared to the selected TesseractOCR but still use it
due to ease of implementation and network independence.

B. Limitations

The work is trained and tested in a controlled simulated
environment and therefore will have some real time limita-
tions. System context includes a single lane road assuming
one vehicle at a time. Also the distance of the markings on
the road are important and part of the ground truth for the
model. Roads are assumed to be straight. These conditions
are necessary for the model to give accurate results. However,
in order to overcome some of the limitations, like detecting
speeds for multiple vehicles on a single lane road and also to
focus the model on a particular vehicle, object tracking can be
implemented. System will require pre-training on the practical
environment ground truth in order for it to work efficiently.

V. CONCLUSION

With advancements in machine learning and deep learning
technologies and the availability of state-of-the-art models
with faster performance rates than the previously available
technologies, it is possible to implement faster and lighter
systems for vehicle speed detections combining different tech-
niques without losing on the efficiency and the overall system

performance. The ability to make the system lightweight and
deployable on mobile devices has opened up many real-
time possibilities. This opens up countless possibilities for
augmenting and improving the current monitoring and surveil-
lance infrastructure. With our process, a novel and highly
adaptive method has been presented with a very open-ended
implementable architecture. It has a high potential for adoption
since there are only 2 low-cost components. This method can
be further improved for multi-lane speed detection by varying
and re-training the presented model on new multi-lane ground
truth.

REFERENCES

[1] J. Gerát, D. Sopiak, M. Oravec and J. Pavlovicová, ”Vehicle speed de-
tection from camera stream using image processing methods,” 2017 In-
ternational Symposium ELMAR, 2017, pp. 201-204, doi: 10.23919/EL-
MAR.2017.8124468.

[2] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying
framework,” Int. J. Comput. Vis., vol. 56, no. 3, pp. 221–255, Feb.
2004, doi: 10.1023/B:VISI.0000011205.11775.fd.

[3] R. Chen and J. S. Liu, “Mixture Kalman filters,” J. R. Stat. Soc.
Ser. B Stat. Methodol., vol. 62, no. 3, pp. 493–508, Jan. 2000, doi:
10.1111/1467-9868.00246.

[4] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering
spatial-temporal data,” Data Knowl. Eng., vol. 60, no. 1, pp. 208–221,
Jan. 2007, doi: 10.1016/j.datak.2006.01.013.

[5] “(PDF) Gaussian Mixture Model - method and application.”
https://www.researchgate.net/publication/321245699 Gaussian Mixture
Model - method and application (accessed Jun. 24, 2021).

[6] A. Gholami Rad, A. Dehghani, and M. Rehan Karim, “Vehicle speed
detection in video image sequences using CVS method,” Academic
Journals, Dec. 2010. doi: 10.5897/IJPS.9000618.

[7] B. Fu, X. Xiong and G. Sun, ”An efficient mean filter algorithm,”
The 2011 IEEE/ICME International Conference on Complex Medical
Engineering, 2011, pp. 466-470, doi: 10.1109/ICCME.2011.5876785.

[8] C. Caraffi, T. Vojı́ř, J. Trefný, J. Šochman and J. Matas, ”A system for
real-time detection and tracking of vehicles from a single car-mounted
camera,” 2012 15th International IEEE Conference on Intelligent Trans-
portation Systems, 2012, pp. 975-982, doi: 10.1109/ITSC.2012.6338748.

[9] J. Sochman and J. Matas, ”WaldBoost - learning for time constrained
sequential detection,” 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), 2005, pp. 150-
156 vol. 2, doi: 10.1109/CVPR.2005.373.

[10] Z. Kalal, K. Mikolajczyk and J. Matas, ”Face-TLD: Tracking-Learning-
Detection applied to faces,” 2010 IEEE International Conference on Im-
age Processing, 2010, pp. 3789-3792, doi: 10.1109/ICIP.2010.5653525.

[11] T. Vojı́ř and J. Matas, “The enhanced flock of trackers,” Stud. Comput.
Intell., vol. 532, pp. 113–136, 2014, doi: 10.1007/978-3-642-44907-9 6.

[12] N. Wang, W. Zhou and H. Li, ”Reliable Re-Detection for Long-
Term Tracking,” in IEEE Transactions on Circuits and Systems for
Video Technology, vol. 29, no. 3, pp. 730-743, March 2019, doi:
10.1109/TCSVT.2018.2816570.

[13] Q. Li, U. Niaz and B. Merialdo, ”An improved algorithm on
Viola-Jones object detector,” 2012 10th International Workshop on
Content-Based Multimedia Indexing (CBMI), 2012, pp. 1-6, doi:
10.1109/CBMI.2012.6269796.

[14] Jianping Wu, Zhaobin Liu, Jinxiang Li, Caidong Gu, Maoxin Si
and Fangyong Tan, ”An algorithm for automatic vehicle speed
detection using video camera,” 2009 4th International Confer-
ence on Computer Science & Education, 2009, pp. 193-196, doi:
10.1109/ICCSE.2009.5228496.

[15] K. V. K. Kumar, P. Chandrakant, S. Kumar and K. J. Kushal, ”Vehicle
Speed Detection Using Corner Detection,” 2014 Fifth International
Conference on Signal and Image Processing, 2014, pp. 253-258, doi:
10.1109/ICSIP.2014.46.

[16] J. Pelegri, J. Alberola and V. Llario, ”Vehicle detection and car speed
monitoring system using GMR magnetic sensors,” IEEE 2002 28th
Annual Conference of the Industrial Electronics Society. IECON 02,
2002, pp. 1693-1695 vol.2, doi: 10.1109/IECON.2002.1185535.

[17] N. Peterfreund, ”Robust tracking of position and velocity with Kalman
snakes,” in IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 21, no. 6, pp. 564-569, June 1999, doi: 10.1109/34.771328.

[18] C. Stauffer and W. E. L. Grimson, “Adaptive background mix-
ture models for real-time tracking,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 2, pp. 246–252, 1999, doi:
10.1109/cvpr.1999.784637.

[19] G. Devarajan, V. K. Aatre and C. S. Sridhar, ”Analysis of median filter,”
ACE ’90. Proceedings of [XVI Annual Convention and Exhibition of
the IEEE In India], 1990, pp. 274-276, doi: 10.1109/ACE.1990.762694.

[20] Shih-Kuan Liao and Baug-Yu Liu, ”An edge-based approach to improve
optical flow algorithm,” 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE), 2010, pp. V6-45-V6-51,
doi: 10.1109/ICACTE.2010.5579363.

[21] M. S. Kumari and B. H. Shekar, ”On the use of Moravec operator for
text detection in document images and video frames,” 2011 International
Conference on Recent Trends in Information Technology (ICRTIT),
2011, pp. 910-914, doi: 10.1109/ICRTIT.2011.5972394.

[22] A. T. Sasongko and M. Ivan Fanany, ”Indonesia Toll Road Vehicle
Classification Using Transfer Learning with Pre-trained Resnet Models,”
2019 International Seminar on Research of Information Technology
and Intelligent Systems (ISRITI), 2019, pp. 373-378, doi: 10.1109/IS-
RITI48646.2019.9034590.

[23] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J.
Schmidhuber, “TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING SYSTEMS 1 LSTM: A Search Space Odyssey,” doi:
10.1109/TNNLS.2016.2582924.

[24] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ”You Only Look
Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788,
doi: 10.1109/CVPR.2016.91.

[25] R. Smith, ”An Overview of the Tesseract OCR Engine,” Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), 2007, pp. 629-633, doi: 10.1109/ICDAR.2007.4376991.

[26] H. Qassim, A. Verma and D. Feinzimer, ”Compressed residual-VGG16
CNN model for big data places image recognition,” 2018 IEEE 8th
Annual Computing and Communication Workshop and Conference
(CCWC), 2018, pp. 169-175, doi: 10.1109/CCWC.2018.8301729.

[27] T. Carvalho, E. R. S. de Rezende, M. T. P. Alves, F. K. C. Balieiro
and R. B. Sovat, ”Exposing Computer Generated Images by Eye’s
Region Classification via Transfer Learning of VGG19 CNN,” 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2017, pp. 866-870, doi: 10.1109/ICMLA.2017.00-47.

[28] B. Koonce, “MobileNetV3,” in Convolutional Neural Networks with
Swift for Tensorflow, Apress, 2021, pp. 125–144.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018.

[30] J. Xu, Z. Li, B. Du, M. Zhang and J. Liu, ”Reluplex made more practical:
Leaky ReLU,” 2020 IEEE Symposium on Computers and Communica-
tions (ISCC), 2020, pp. 1-7, doi: 10.1109/ISCC50000.2020.9219587.

[31] J. Zong Chen, ”Automatic Vehicle License Plate Detection using K-
Means Clustering Algorithm and CNN”, March 2021, vol. 3, no. 1, pp.
15-23, 2021. Available: 10.36548/jeea.2021.1.002.

[32] S. S and H. Wang, ”Security Enhancement in Smart Vehicle Using
Blockchain-based Architectural Framework”, June 2021, vol. 3, no. 2,
pp. 90-100, 2021. Available: 10.36548/jaicn.2021.2.002.

[33] R. Bestak, ”INTELLIGENT TRAFFIC CONTROL DEVICE MODEL
USING AD HOC NETWORK”, December 2019, vol. 01, no. 02, pp.
68-76, 2019. Available: 10.36548/jitdw.2019.2.002.

[34] D. R and K. R, ”Bus-Based VANET using ACO Multipath Routing
Algorithm”, March 2021, vol. 3, no. 1, pp. 40-48, 2021. Available:
10.36548/jtcsst.2021.1.004.

